
Measurements and Laboratory Simulations of the
Upper DNS Hierarchy

Duane Wessels1, Marina Fomenkov2, Nevil Brownlee2, and kc claffy2

1 The Measurement Factory, Inc.
wessels@measurement-factory.com

2 CAIDA, San Diego Supercomputer Center, University of California, San Diego
{marina, nevil, kc}@caida.org

Abstract. Given that the global DNS system, especially at the higher root and
top-levels, experiences significant query loads, we seek to answer the following
questions: (1) How does the choice of DNS caching software for local resolvers
affect query load at the higher levels? (2) How do DNS caching implementations
spread the query load among a set of higher level DNS servers?
To answer these questions we did case studies of workday DNS traffic at the
University of California San Diego (USA), the University of Auckland (New
Zealand), and the University of Colorado at Boulder (USA). We also tested var-
ious DNS caching implementations in fully controlled laboratory experiments.
This paper presents the results of our analysis of real and simulated DNS traffic.
We make recommendations to network administrators and software developers
aimed at improving the overall DNS system.

1 Background

The Domain Name System (DNS) is a fundamental component of the modern Inter-
net [1], providing a critical link between human users and Internet routing infrastructure
by mapping host names to IP addresses. The DNS hierarchical name space is divided
into zones and coded in the widespread “dots” structure. For example, com is the parent
zone for microsoft.com, cnn.com, and approximately 20 million other zones.

The DNS hierarchy’s root zone is served by 13 nameservers, known collectively
as the DNS root servers. However, the root server operators use various techniques to
distribute the load among more than 13 servers. Perhaps the oldest technique is a load-
balancing switch for servers at the same site. The most recent technique is IP anycast.
We estimate that, by now, there are actually close to 100 physical DNS root servers,
even though there are only 13 root server addresses [2].

Just under the root are servers for the Internet’s 260-or-so top-level domains (TLDs),
such as .com, .nz, and .us. TLD servers are similar to the roots in their requirements,
architecture and traffic levels. In fact, many of them are significantly busier. The TLD
zones contain referrals to second-level domains (SLDs), and so on.

Why does the Internet need so many root and TLD servers? Is this simply a fact
of life, or have we inadvertently created a monster? One of the reasons that we need
so many is to carry the normal request load, including a high proportion of unanswer-
able requests from poorly configured or buggy DNS resolvers. Another is to provide
resilience against increasingly common distributed denial of service attacks targeting

the system. As the top of the DNS hierarchy becomes more distributed, it is harder for
attackers to affect the service.

In this paper, we focus on the behavior of various DNS caching implementations.
The behavior of DNS caches is important because they generate almost all of the queries
to authoritative (root, TLD, SLD, etc) servers on the Internet. Authoritative servers
do not query each other. Stub resolvers should always send their queries to caching
nameservers, rather than talk directly to the authoritative servers.

2 Measurements of Live DNS Traffic

For a case study of workday DNS load in academic networks we used the NeTraMet
tool [3] to capture samples of DNS traffic (Table 1) at the University of California
San Diego (UCSD), USA, the University of Colorado (UCol), USA and the Univer-
sity of Auckland (UA), New Zealand. We configured NeTraMet to select only DNS
packets to/from the root and gTLD3 nameservers; these form a small set of high-level
nameservers with known IP addresses. Each DNS sample provides the following infor-
mation: time (in ms) when a query was sent or a response was received, which root or
gTLD server it was sent to, the source host IP address, and a query ID. The UA and
UCol samples (but not UCSD) include query types. The most recent samples collected
in December 2003 also captured top level and second level domains for each query.

Samples UCSD U. of Auckland U. of Auckland U. Colorado
Feb 03 Sep 03 Dec 03 Dec 03

Query rates to roots, per min 214 29 10 9
Query rates to gTLDs, per min 525 67 76 70

Number of query sources 147 19 42 1
Sample duration, hrs 48 64.5 157.3 157.2

Median response times (from roots) 5–200 60–340 5–290 27–180
% due to 3 highest users 58 85 74 100

% of A queries n/a 23 70 81
Table 1. Samples of DNS traffic to root and gTLD servers

The number of source hosts addressing the roots and/or gTLDs in the UCSD and
UA data is larger than we expected. However, the distribution of queries among sources
is highly skewed. Typically, the bottom half of sources produce < 1% of the overall
query load while a small number (3–5) of top sources is responsible for 80% or more
of the total traffic. Network administrators need to exercise proper control of those few
high level sources that dominate external DNS traffic and to optimize the software those
source hosts use. At the same time, end user hosts should be configured to send DNS
requests to (internal) local nameservers, rather than to root and TLD servers directly.

Typically, the DNS traffic is dominated by A queries (hostname-to-address lookups)
as in our December samples. This observation is in general agreement with other mea-
surements (cf. [4], [5]). The first sample of UA DNS traffic was unusual because two

3 The gTLDs are: com, net, org, edu, mil, int, and arpa.

of the three top users generated only PTR queries (address-to-hostname lookups). With
the exception of these two sources, A queries constitute 58% of the remaining traffic.

2.1 Response Time and Server Selection

We found that in all samples the root server response time distributions has a long
tail, except for G root, which is bimodal. Table 1 shows the range of median root
server response times experienced by the busiest query source in each data set. For
all nameservers at the same location response time distributions are very similar since
the response time correlates with the geographical distance from the point of measure-
ments to a given root server [6]. Nowadays, due to proliferation of anycast root server
instances, the exact geographical location of a given root server has become a moot
point.4 Response time actually correlates with the distance to the closest anycast node.
For example, the UA nameservers have a median response time of only 5 ms from the
anycast F root node in New Zealand.

As we show in the next section, different resolvers utilize different nameserver se-
lection algorithms. For the live data, we studied the probability of selecting a given
root server versus its median response time (Figure 1). For each query source, response
times were normalized by the minimum response time to the closest root server. When
possible, we verified the software being used by hosts at each site. UCol was running
BIND8, while both UA nameservers shown were running BIND9. For the UCol and
UA#2 sources the probability is approximately inversely proportional to the response
time, as expected. However, the UA#1 sent its queries (predominantly PTR) to the root
servers in nearly uniform manner ignoring the latency. The UCSD#1 nameserver was
using some Windows software and we were not able to obtain any indicative infor-
mation about UCSD#2. It appears that both UCSD hosts more or less ignore response
times when choosing which root servers to use.

2.2 Query Rates, Duplication and Loss of Connectivity

We analyzed our most detailed samples from December 2003 in order to estimate the
contribution of repeated queries to the total traffic. Table 2 compares the behavior of A

queries to root and gTLD servers sent by the UCol nameserver and by the busiest UA
source. For both of them A queries make up about 80% of the total traffic they generate.5

For both sources, the bulk of A queries to gTLD servers receive positive answers
and, on average, there are 3 to 4 queries per each unique SLD. However, only 2% of
A queries sent to root servers by UCol host were answered positively, with an average
of 6.7 queries per each unique TLD. This result is in agreement with findings of [7]
which showed that only 2% of queries reaching root servers are legitimate. The average
repetition rate corresponds to about one query per TLD per day which seems reasonable.
At the same time, queries for invalid domains seem to be repeated unnecessarily.

4 [2] gives locations of anycast nodes for the root servers. Unfortunately there is no straightfor-
ward way to determine which server instance any particular DNS reply packet came from.

5 Next most frequent types of queries are: for the UA source – PTR, 11%, for the UCol source –
SOA, 9%.

 0.01

 0.1

 1

 10

 100

 1 10 100

%
 o

f q
ue

rie
s

server response time (relative to min)

Server selection vs. response time

UCol, Dec 03
UA#1, Sep 03
UA#2, Dec 03

UCSD#1, Feb 03
UCSD#2, Feb 03

Fig. 1. Distributions of queries among root servers vs. response time. Each point on the plots
shows percentage of queries sent to a given root server; the points are plotted in order of increas-
ing response time.

In contrast, the busiest UA nameserver received 77.7% of positive answers from the
roots. The average number of queries per TLD is 125.4. For example, there were 5380
queries for .net or approximately one query every two minutes. Each one received a
positive answer and yet the server continued asking them.

Samples, 6.5 days long U. Auckland U. Colorado
Queries to roots gTLDs roots gTLDs

positive answers, % 77.7% 94.7% 2.1% 96.3%
av. # of q. per domain 125.4 3.0 6.7 4.4

most frequent .net, 5380 .iwaynetworks.com, 2220 .mil, 293 .needsomedealz.com, 6014
negative answers, % 20.6% 1.9% 97.1% 3.4%

most frequent .cgs, 325 .coltframe.com, 134 .dnv, 13660 .jclnt.com, 7694
Table 2. Statistics of A queries

Samples U. Auckland U. Colorado
Queries to roots gTLDs roots gTLDs

real traffic 96,759 722,265 86,229 658,784
TTL = 3 h 20,833 306,566 30,243 308,002
TTL = 24 h 10,140 211,914 26,165 229,080

Table 3. Simulated query rates

Our data indicate that repeated queries constitute a considerable fraction of the over-
all load and that both positive and negative caching can be improved. Using the actual
query load observed, we simulated an ideal case when each query would be asked only
once: (a) it is not repeated impatiently before the answer comes back, and (b) the an-
swer, whether negative or positive, is cached and the same query is not repeated until
its TTL expires. The results (Table 3) indicate that proper timing and caching of queries
possibly can reduce the load by a factor of 3 or more. However, this simulation obvi-
ously is too optimistic since some repetition of queries to root/TLD servers is unavoid-

able, for example in a case when queries for aaa.foo.com and bbb.foo.com immediately
follow each other and neither .com nor foo.com are cached.

Loss of connectivity is another cause of repeated queries. In all our measurements,
the loss of packets was very low, typically < 0.5%. However, there was a one hour
period of connectivity loss in the University of Auckland data on 6 Dec 03, during which
their nameservers sent queries but no answers came back. The query rate increased
more than 10-fold, but quickly subsided back to normal levels as soon as connectivity
resumed (Figure 2).

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

Sat
12-06
11:20

Sat
12-06
11:40

Sat
12-06
12:00

Sat
12-06
12:20

Sat
12-06
12:40

Sat
12-06
13:00

Sat
12-06
13:20

Sat
12-06
13:40

N
um

be
r

of
 r

eq
ue

st
s

Time (UTC)

Requests sent to gTLD servers
(per 2 minute interval)

 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M

Fig. 2. Query rates to gTLD servers. Each subsequent plot is shifted up by 100. There were two
periods of connectivity loss when no answers were received: from 11:40 till 11:50 and from 12:00
till 13:00. During these periods query rates increased considerably.

3 Laboratory Simulations

3.1 Experimental Setup

We set up a mini-Internet in our laboratory to study the behavior of DNS caches. Do
they distribute the load as they should? What happens when the cache cannot talk to any
root servers? In our setup (Figure 3), three systems on top mimic the authoritative root,
TLD, and SLD servers. These systems all run BIND8. Another system, “Cache” in the
middle, runs the various DNS caches that we test, one at a time. The bottom system,
“User”, generates the test load of end-user queries.

Networking and Addressing. It is somewhat of a stretch to replicate the massive DNS
system with only five computers. We use a few tricks to make this a little more realistic.
We gave the root, TLD, and SLD authoritative servers multiple IP addresses (13, 254,
and 254, correspondingly), bound to the loopback interface. Thus, each server’s exter-
nal interface acts like a router—a way to reach the loopback addresses. The caching
nameserver, and the User system have one address each. All systems are attached to
a single 100baseTX Ethernet segment. We use FreeBSD’s Dummynet feature to intro-
duce simulated packet loss and delays for some tests.

WAN

W2003

172.16.2.14 172.16.2.15

CNS

172.16.2.4

192.168.4.1−254

172.16.2.3

192.168.3.1−254

172.16.2.10

BIND8

172.16.2.11

BIND9

172.16.2.12

DJBDNS W2000

172.16.2.13

192.168.2.1−13

172.16.2.2

User
172.16.2.6

roots TLDs SLDs

Cache Cache CacheCacheCacheCache

Fig. 3. Network setup for DNS tests. The “User” system sends DNS queries to only one of the
caches in each test. The cache recursively resolves queries for the user by talking to the au-
thoritative root, TLD, and SLD servers. For some tests we introduce wide-area packet loss and
transmission delays with FreeBSD’s dummynet.

Trace Data. To drive the simulation, we created a trace file of DNS requests by col-
lecting hostnames from 12 hours of the IRCache HTTP proxies [8] data. The trace
file contains 5,532,641 DNS requests for 107,777 unique hostnames. There are 70,365
unique second-level zones, and 431 top-level zones (many of them bogus). The trace
contains many repeated queries as necessary to test the caching part of the DNS cache.

We also take timestamps from the proxy logs and replay the trace at the same rate,
preserving as closely as possible the time between consecutive queries. Thus, each test
run takes 12 hours to complete.

Zone Files. Our scripts generate BIND zone files based on the contents of the trace
file. We do not generate zones for bogus TLDs. Thus, we can also test negative caching.

For the root and TLD zones, we try to mimic reality as closely as possible. For
example, we use the same number of nameserver IP addresses and the same TTLs for
NS and glue records.6 To get the real values, we issued the necessary queries out to the
Internet while building the zone file data.

We also try to match our simulated SLD parameters to reality. There are too many
SLD zones (more than 100,000) and querying all of them would take much too long.
Instead, we obtained the necessary values (the number of A records per name and the
TTLs for A, NS, and CNAME records) from a random sample of 5000 domains and
generated similar random values for the SLD zones in the trace. Unlike reality, each
simulated SLD zone has only two NS records. We also determined that about 35% of
the names in the trace file actually point to CNAME records, and our simulated zone data
mimics this as well.

6 Glue records are, essentially, A records for nameservers of delegated zones.

Tested Configurations. We tested the following six different DNS caches using their
default configuration parameters.

1. BIND 8.4.3
2. BIND 9.2.1
3. dnscache 1.05, aka DJBDNS with CACHESIZE set to 100,000,000
4. Microsoft Windows 2000 v5.0.49664
5. Microsoft Windows 2003 v5.2.3790.0
6. CNS 1.2.0.3

For each cache, we ran tests for six different network configurations:

1. No delays, no loss
2. 100 millisecond delays, no loss
3. linear delays, no loss
4. linear delays, 5% loss
5. linear delays, 25% loss
6. 100% loss

The no-delay/no-loss configuration is simple, but unrealistic. For most real users,
the root/TLD/SLD servers are between 30 and 200 milliseconds away (cf. Table 2). The
100ms-delay/no-loss test uses a constant 100-millisecond delay to each root/TLD/SLD
server, but with no packet loss. It is also somewhat unrealistic.

In the next three configurations, with so-called linear delays, a nameserver’s latency
(in ms) is proportional to its order n in the nameserver list: τ = 30 + 10n. For zones
such as the root and com, which have 13 nameservers, the last one is 160 milliseconds
away from the cache. This arrangement provides some pseudo-realistic diversity and
allows us to see how often a DNS cache actually selects a nameserver with the best
response time. We believe the linear-delay/5%-loss test to be the most realistic among
all six configurations.

The final configuration has 100% packet loss. This test mimics a situation when
a DNS cache cannot communicate with any authoritative nameservers. Reasons for
such non-communication include firewalls, packet filters, unroutable source addresses,
and saturated network connections. Live measurements showed that when the cache’s
queries reach an authoritative nameserver, but the replies do not make it back, the DNS
traffic increases (cf. Figure 2).

3.2 Results

General statistics. Figure 4 shows how many queries each DNS cache sent in various
tests. For example, the leftmost bar shows that in the no-delay/no-loss test, BIND8 sent
a small number of queries to the roots, about 400,000 queries to the TLDs, and about
600,000 to the SLDs. Its total query count is just over 1,000,000.

BIND8 always sends more queries than any of the other caches, primarily because it
sends three queries (A, A6, and AAAA) to the roots/TDLs/SLDs for each of the expired
nameserver addresses for a given zone. Recall that every SLD zone in our model has
two nameservers, while root and TLD zones usually have more. This result implies that

bind8 bind9 djbdns w2000 w2003 cns

C
um

ul
at

iv
e

Q
ue

ry
 C

ou
nt

0

200000

400000

600000

800000

1e+06

1.2e+06

1

1

1

1 1

1

2

2

2

2 2

2

3

3

3

3 3

3

4

4

4

4 4

4

5

5

5

5 5

5

Roots TLDs SLDs

1 − no delay, no loss
2 − 100ms delay, no loss
3 − linear delay, no loss
4 − linear delay, 5% loss
5 − linear delay, 25% loss

Fig. 4. Cumulative query counts for all caches.

the number of nameservers and their address record TTLs can have a significant impact
on DNS traffic.

The BIND9 results show the largest percentage of root server queries. For the no-
loss tests, BIND9 sends 55,000 queries to the roots, versus only 1800 for BIND8. The
reason for this is because BIND9 always starts at the root when querying for expired
nameserver addresses and sends an A and A6 query for each nameserver.

The DJBDNS data also shows a relatively high fraction of root server queries, which
is about half of the BIND9 numbers. DJBDNS also starts at the root when refreshing
expired nameserver addresses. However, it only sends a single A query for one of the
nameservers, not all of them.

The two Windows results are very similar, with slightly more queries from W2003.
These two send the fewest overall number of queries for the five test cases shown.

CNS fits in between DJBDNS and BIND9 in terms of total number of queries. Due
to its low root server query count, we can conclude that it does not start at the root for
expired nameserver addresses. Also note that, like BIND8, CNS sends slightly fewer
queries for the 100-millisecond delay test (#2), than it does for the no-delay test (#1).

Root Server Query Counts. Table 4 shows counts of queries to the roots in each
test. As discussed above, except for the 100% loss tests, BIND9 and DJBDNS hit the
roots much harder than the others. The BIND8 numbers would probably be closer to
Windows if it did not send out A6 and AAAA, in addition to A queries.

The 100% loss tests are very interesting. Our trace contains 5,500,000 hostnames
and that is how many queries the fake user sends to the cache. Except for BIND9, all
other caches become very aggressive when they do not get any root server responses.
They send out more queries than they receive. On one hand this is understandable be-
cause there are 13 root nameservers to reach. However, it is appalling that an application
increases its query rate when it can easily detect a communication failure. The worst
offender, W2000, actually amplifies the query stream by more than order of magnitude.

Delays none 100ms linear linear linear
Pkt Loss none none none 5% 25% 100%
BIND8 1,826 1,876 1,874 1,899 2,598 37,623,266
BIND9 55,329 55,260 55,256 59,222 99,422 2,564,646
DJBDNS 24,328 27,646 27,985 30,341 44,503 12,155,335
W2000 622 657 663 727 1,020 66,272,276
W2003 693 669 666 709 1,009 39,916,750
CNS 824 831 924 975 1,179 12,456,959

Table 4. Number of Messages sent to roots.

BIND9 is the exception in the 100% loss tests. It actually attenuates the client’s
query stream, but only by about half. BIND9 is the only DNS caching software that
has a nifty feature: it avoids repeat queries for pending answers. For example, if user
sends two back-to-back queries (with different query-IDs) for www.example.com,7 most
caching resolvers will forward both queries. BIND9, however, forwards only one query.
When the authoritative answer comes back, it sends two answers to the user.

no delay 100ms delay linear delay no delay 100ms delay linear delay
no loss no loss 5% loss 100% loss no loss no loss 5% loss 100% loss

B
IN

D
8

W
20

00

B
IN

D
9

W
20

03

D
JB

D
N

S

C
N

S

Table 5. Distribution of queries to root and com TLD nameservers, showing how the caching
nameserver distributed its queries in each test. The upper, lighter bars show the histogram for
root nameservers. The lower, darker bars show the histogram for the com TLD nameservers.

Root/COM Nameserver Distribution. Table 5 shows how the caches distribute their
queries to the root (lighter bars) and to the com TLD server (darker bars) for four of the
test cases. BIND8 almost uses a single server exclusively in the no-delay/no-loss test.
Since that server always answers quickly, there is no need to try any of the others. In the
100-millisecond delay test, however, BIND8 hits all servers almost uniformly. The test
with linear delays and 5% loss has an exponential-looking shape. The first nameservers
have the lowest delays, and, unsurprisingly, they receive the most queries. The 100%
loss test is odd because, for some reason, five of the servers receive twice as many
queries as the others.

The BIND9 graphs look very nice. The two no-loss tests, and the 100%-loss test,
show a very uniform distribution. Also, the linear-delay/5%-loss test yields another
exponential-looking curve, which is even smoother than the one for BIND8.

DJBDNS shows a uniform distribution for all tests. The software does not try to find
the best server based on delays or packet loss. This is an intentional design feature.8

7 Of course the answer must not already be cached.
8 See http://cr.yp.to/djbdns/notes.html

Windows 2000 has very poor server selection algorithms, as evidenced by the his-
tograms for the 100ms-delay and linear-delay tests. It selects an apparently random
server and continues using it. In the 100%-loss test it did query all roots, except the
second one for some reason. The Windows 2003 DNS cache is somewhat better, but
also shows strange patterns.

CNS also demonstrated odd server selections. To its credit, the linear-delay/5%-
loss case looks reasonable, with most of the queries going to the closest servers. In the
100%-loss test, the selection is almost uniform, but not quite.

4 Conclusion

Our laboratory tests show that caching nameservers use very different approaches to
distribute the query load to the upper levels. Both versions of BIND favor servers with
lower round-trip times, DJBDNS always uses a uniform distribution, Windows 2000
locks on to a single, random nameserver, and Windows 2003 shows an odd, unbalanced
distribution. BIND9 and DJBDNS hit the roots much harder than other caches to avoid
certain cache poisoning scenarios. BIND8 and BIND9’s optimism in looking for IPv6
addresses results in a significant amount of unanswerable queries.

DNS zone administrators should understand that their choice of TTLs affects the
system as a whole, rather than their own nameservers. For example, a BIND9 cache
sends two root server queries each time a nameserver address expires. Popular sites can
help reduce global query load by using longer TTLs.

Both laboratory tests and live measurements show that caching resolvers become
very aggressive when cut off from the DNS hierarchy. We believe that resolvers should
implement exponential backoff algorithms when a nameserver stops responding. We
feel strongly that more caching implementations should adopt BIND9’s feature that
avoids forwarding duplicate queries. Other implementations should employ DJBDNS’s
minimalist strategy of sending only a single A query for expired nameserver glue.

Acknowledgments: Support for this work is provided by WIDE project (http://www.
wide.ad.jp) and by DARPA grant 66001-01-1-8909.

References

1. Albitz, P., Liu, C.: DNS and BIND. O’Reilly and Associates (1998)
2. RSSAC: Root servers locations (2004) http://www.root-servers.org/.
3. Brownlee, N.: NeTraMet - a Network Traffic Flow Measurement Tool (2002) http://

www.caida.org/tools/measurement/netramet/.
4. Jung, J., Sit, E., Balakrishnan, H., Morris, R.: DNS Performance and the Effectiveness of

Caching. In: ACM SIGCOMM Internet Measurement Workshop. (2001)
5. Keys, K.: Clients of dns root servers (private communication) (2002) http://www.

caida.org/˜kkeys/dns/2002-08-28/.
6. T. Lee, B. Huffaker, M. Fomenkov, kc claffy: On the problem of optimization of DNS root

servers’ placement. In: PAM. (2003)
7. D. Wessels, M. Fomenkov: Wow, That’s a Lot of Packets. In: PAM. (2003)
8. IRCache: Information resource caching project (2004) Funded by NSF grants NCR-9616602

and NCR-9521745, http://www.ircache.net/.

