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Abstract—
Previous research has shown that most of the DNS

queries reaching the root of the hierarchy are bogus [1].
This behavior derives from two constraints on the system:
(1) queries that cannot be satisfied locally percolate up to
the root of the DNS; (2) some caching nameservers are be-
hind packet filters or firewalls that allow outgoing queries
but block incoming replies. These resolvers assume the net-
work failure is temporary and retransmit their queries, of-
ten aggressively.

DNS pollution may not be causing any perceivable per-
formance problems. The root servers seem well equipped
to handle the load. Since DNS messages are small, the pol-
lution does not contribute significantly to the total traffic
generated by most organizations. Nonetheless, this paper
provides a few reasons why network operators should take
the time to investigate and fix these problems.

Index Terms—DNS caching root server

I. INTRODUCTION

The Domain Name System (DNS) is the subject of crit-
ical attention and dramatic claims: how robust it is, how
broken it is, how well it scales, and why it will fail.

The subject of this paper is DNS pollution, a term we
use to refer to DNS queries (or responses) that should not
occur on the wide-area Internet. We have been privileged
to perform a number of studies of traffic reaching the “F”
root DNS server. Without exception these studies confirm
that many queries reaching the DNS root are bogus, i.e.,
constitute pollution of the global DNS.

Danzig et al. performed the first study of wide-area
DNS misbehavior in 1992 [2]. They observed a variety
of problems, such as recursion loops, uselessly repeated
queries, and poor failure detection algorithms. Many of
these problems remain with us today. Nine years later,
Brownlee et al. did a similar study [3] where they found
repeated queries, invalid TLDs, queries from and for RFC
1918 address space, attempts to update the root zone, and
bogus A queries. Our 2003 study [1] found that 70% of
F-root’s queries were repeats and also characterized some
of the busiest query sources. Our recent paper [4] studied
the caching behavior of popular DNS nameserver imple-
mentations.

We are currently monitoring DNS traffic on two of the
20 F-root nodes.1 The F-root, like many DNS root servers,
uses IP anycast to make numerous, widely distributed
nodes appear as a single service [5]. One of these anycast
nodes is located in San Francisco, USA (named SFO2),
and the other in Palo Alto, USA (named PAO1). On a
normal weekday, each node receives approximately 2000
DNS queries per second. About 35% of those queries
are immediately identifiable as pollution. That figure ex-
cludes repeated queries, which we do not address in this
paper.

II. TYPES OF DNS POLLUTION

A. A-for-A Queries

An A-for-A query happens when a DNS client asks a
question such as, “what is the IP address of 1.2.3.4?” Such
a query is bogus because the query name is already an IP
address. Software that originates such queries should be
smart enough to not send them in the first place. Line 1 of
Figure 1 shows an example of this type of query.

CAIDA’s earlier paper [3] helped identify this behavior
as a bug with the Microsoft Windows NT stub resolver.
Usually, the resolver library, i.e., the code applications
rely on to convert domain names to IP addresses, detects
these bogus queries. For example, if an application passes
an IPv4 address to the Unix gethostbyname() function, the
library generates the answer internally without contacting
any DNS servers.

However, some caching resolvers do not recognize this
type of query as bogus. Instead, they will try to forward
the query to an authoritative server, as if the last IP address
octet were a valid top-level domain. The dnscache [6]
nameserver automatically recognizes and answers these
queries.

Since Microsoft found and fixed this bug with Windows
NT Service Pack 2, we have observed a decrease in the
percentage of queries that fall into this category. In the
January 2001 study [3], bogus queries constituted about
14% of the total load measured at F-root. By October
2002, that number dropped to 7%, where it remains today

1http://f.root-servers.org/
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1 23:15:45.225068 x.x.x.x.x > 192.5.5.241.53: 7416 A? 152.146.137.98. (32)
2 23:15:45.384598 x.x.x.x.x > 192.5.5.241.53: 231 PTR? 154.5.24.172.in-addr.arpa. (43)
3 23:16:18.266078 x.x.x.x.x > 192.5.5.241.53: 56503 [1au] A? kloun.com/index.htm. (48)
4 23:17:25.334112 x.x.x.x.x > 192.5.5.241.53: 18224 [1au] MX? smileys.html. (41)
5 23:17:46.072526 x.x.x.x.x > 192.5.5.241.53: 59041 [1au] A6? H.ROOT-SERVERS.NET. (47)
6 23:17:46.072551 x.x.x.x.x > 192.5.5.241.53: 34825 [1au] AAAA? H.ROOT-SERVERS.NET. (47)
7 23:17:46.072945 x.x.x.x.x > 192.5.5.241.53: 58725 [1au] A? H.ROOT-SERVERS.NET. (47)
8 23:17:46.072957 x.x.x.x.x > 192.5.5.241.53: 20650 [1au] A6? G.ROOT-SERVERS.NET. (47)
9 23:17:46.073957 x.x.x.x.x > 192.5.5.241.53: 47791 [1au] AAAA? G.ROOT-SERVERS.NET. (47)
10 23:17:46.074568 x.x.x.x.x > 192.5.5.241.53: 5951 [1au] A? G.ROOT-SERVERS.NET. (47)

Fig. 1. A few examples of DNS pollution as seen by tcpdump.

(April 2004). It is also interesting to note that this percent-
age is higher during weekends and lower during the work
week, indicating that these queries are likely generated by
automated agents rather than humans.

B. Queries and Updates for RFC 1918 Addresses

RFC 1918 [7] defines three IPv4 address blocks for
use on private, internal networks. In theory, references to
these addresses should never leak out into the public Inter-
net. An organization that uses RFC 1918 addresses inter-
nally should also create authoritative in-addr.arpa zones
for them on one or more nameservers. In this way, queries
for RFC 1918 addresses remain within the organization.

The reality, of course, is that the root servers see mil-
lions of queries each day for RFC 1918 addresses. Line 2
of Figure 1 shows an example of this type of pollution.

Even if you do not use RFC 1918 addresses your-
self, your caching nameserver may be a source of bogus
queries. This behavior can occur if you have a service,
such as an SMTP or HTTP server, that makes PTR queries
for validation or logging. If your ISP does not block RFC
1918 addresses in its routers, you may receive packets
from these source addresses. Your applications may at-
tempt reverse DNS lookups even though that IP address is
unroutable.

As of April 2004, bogus RFC1918 queries comprise
about 1–3% of the total load at F-root. In fact, there are
many more RFC 1918 queries out there that DNS root
servers do not even see. Most of these queries go a server
that has been delegated to be authoritative for the pri-
vate address space just to mitigate the pollution caused
by these unnecessary and inappropriate queries. In fact,
there are actually 20 or so servers distributed around the
Internet, using IP anycast to minimize the wide area band-
width consumed by this pollution [8].

C. Queries for Invalid TLDs

We use “invalid TLD” to refer to a top-level domain that
is not officially recognized by ICANN and IANA. In ad-

dition to the 243 Country Code TLDs, there are currently
14 Generic TLDs, and one infrastructure domain.2

Due to local configuration problems, queries contain-
ing many invalid TLDs frequently reach DNS root servers.
Common invalid TLDs are: localhost, local, corp, work-
group, and domain. We also see TLDs that are more likely
filename extensions, such as htm, txt, and c. See lines 3
and 4 in Figure 1.

Several circumstances could cause invalid domain
names leak into the wide-area Internet:

1) Internet-connected hosts are configured with an in-
correct domain name or none at all.

2) Human errors and software bugs may cause appli-
cations to attempt resolution of strings that are not
really domain names.

3) Mobile devices, such as laptops, move from corpo-
rate intranets to the public Internet.

4) Products are distributed with bogus default values,
which ignorant users do not change.

Queries with invalid TLDs are the most common type
of DNS pollution. As of April 2004, 15% of queries
reaching PAO1, and 20% reaching SFO2, fall into this
category. Unfortunately, root servers cannot offload these
queries to other servers, as they can with RFC 1918 in-
addr.arpa, for example. They can only respond with a
name error (NXDomain) message and hope that the client
implements negative caching [9]. As far as we know, all
of the well-known resolvers implement negative caching.

Invalid TLDs are particularly problematic because the
DNS does not provide any way for a cache to realize
that the TLD is invalid. For example, if a user makes a
query for aa.foobar, the caching resolver contacts a root
server and receives a name error. Subsequent queries for
aa.foobar result in a negative cache hit. However, if the
user then issues a query for bb.foobar, the caching re-
solver again contacts a root server. It does not realize that
foobar is the problem, rather than aa or bb.

2http://www.iana.org/domain-names.htm
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Queries for [a−m].root−servers.net
Generated: Sunday, Apr 04, 2004, 19:15:00 UTC
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Fig. 2. Two spikes in IPv6 queries received by F-root for [a-m].root-
servers.net.

D. Queries for [a-m].root-servers.net

All caching nameservers use a list of root server “hints”
when they launch, which is how the nameserver knows
where to send initial queries, until it learns about dele-
gated nameservers through referrals. From time-to-time,
the DNS cache refreshes the IP addresses of all root
servers. See lines 5–10 of Figure 1. For a well-behaved
caching resolver, this should happen when the cached
records expire.

We currently observe a significant amount of queries
for [a-m].root-servers.net at F-root: 10% of the total on
PAO1 and 5% on SFO2. One reason is that this root
server, and indeed most roots, are also authoritative for
the root-servers.net domain. However, this rate of 100–
200 queries/sec seems disturbingly high given that the A
records for [a-m].root-servers.net have a 1000 hour TTL.
We suspect that many of these queries are repeats from
caches that, due to firewall or routing configuration issues,
can send to, but not receive from, the root servers.

Even worse, we often see large query spikes (see
Figure 2) at F-root for IPv6 addresses of [a-m].root-
servers.net. During these spikes, which generally last
from 5 to 20 minutes, these fruitless queries account for
25–50% of all queries received at the two F-root nodes. At
this time, the root-servers.net zone does not contain any
IPv6 address records, so these queries all result in nega-
tive answers. Investigation of the sources of these queries
suggests that they are due to a bug in BIND versions 8.3.3
and 8.3.4.

E. IPv6 Address Queries

As mentioned in the previous section, IPv6 queries for
[a-m].root-servers.net are a common source of pollution.
In fact, about 1% of all the queries arriving at F-root are
asking for the IPv6 address of one of the root servers. An-

other 6% of F-root’s queries are asking for IPv6 addresses
of other nameservers or hosts.

The DNS has two types of IPv6 address records: AAAA
and A6. AAAA records are simple but long. A6 records
were designed to ease address portability issues at the ex-
pense of complicating the protocol. Since IPv6 is still rare
compared to IPv4, most DNS zones do not have any AAAA
or A6 records for their nameservers.

BIND8 and BIND9 [10] are the only implementations
known to issue AAAA and/or A6 queries for nameserver
“glue”3, at least by default. These IPv6 queries happen
even if you do not have any IPv6 addresses configured on
your host.

Not only are these queries a completely avoidable bur-
den on the roots, but identical IPv6 queries are also re-
peated far more frequently than necessary. Consider a
query for the name a.root-servers.net, for example. A suc-
cessful answer to an A query for that name is cached for
five weeks. However, the negative answer to an AAAA
query for that name is cached for a much shorter time.
BIND limits negative caching to three hours by default.

III. DETECTING DNS POLLUTION

Detecting DNS pollution is challenging because of-
ten user applications continue to work even though some
DNS queries yield useless or no answers. Thus, there is
often little incentive to track down and fix global DNS
pollution.

General purpose applications such as tcpdump and
etherreal allow one to examine DNS queries on the wire
in real-time, but it is an awkward way to debug DNS prob-
lems, especially for a busy server. Detecting pollution
from such voluminous output can be excruciating.

As a recommended alternative, we offer4 the dnstop
program [12]. dnstop uses the Berkeley Packet Filter in-
terface to capture DNS queries and displays statistics us-
ing curses [13]. dnstop maintains tables of query counts,
and supports displaying results categorized by:

• Top-level domain
• Second-level domain
• Query type
• Opcode
• Source IP address
• Destination IP address

dnstop also has a number of filters that make it easier
to detect certain problems. For example, the A-for-A filter

3Glue is an address record for a nameserver that tells a resolver how
to contact a domain’s nameserver before it knows anything else about
that domain. See [11] for more information.

4dnstop is available under a BSD-style license.
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Wed Apr 14 19:14:08 2004
9 new queries, 3045 total queries

TLD count %
-------------------- --------- ------
local 414 13.6
localhost 251 8.2
txt 85 2.8
147 31 1.0
1 23 0.8
invalid 22 0.7
null 22 0.7
belkin 21 0.7
workgroup 20 0.7
212 19 0.6
50 18 0.6
c 17 0.6
105 17 0.6
iec 17 0.6
10 17 0.6
emails 17 0.6
2 16 0.5
8 15 0.5
56 15 0.5
3 14 0.5
lan 14 0.5
5 13 0.4
0 13 0.4
universe 13 0.4
4 12 0.4
domain 11 0.4

Fig. 3. Sample output of dnstop -s -f unknown-tlds eth0 on F-root.

shows only type A queries that already look like an IP ad-
dress. Thus, it becomes transparent to identify clients that
send these bogus queries.

Similarly, the unknown-tlds filter shows only queries
where the TLD is invalid. For example, Figure 3 shows
the output of dnstop with the unknown-tlds filter on F-root
for a few seconds.

The dnstop program also has a filter to detect PTR
queries for RFC 1918 address space and another to detect
dynamic DNS updates [14] to RFC 1918 space.

It is probably unnecessary to use dnstop to detect
queries for [a-m].root-servers.net; one can easily use tcp-
dump and grep to list offending hosts. To use dnstop for
the same task, simply look at the second-level domain
counts and see if root-servers.net is higher than it should
be: a correctly configured cache should not generate more
than about 25 queries per hour.

IPv6 queries for nameserver addresses are not hard to
detect either. If you use BIND, chances are good that your
nameserver emits them. You can grep for AAAA and A6
in tcpdump output, or look at dnstop’s query type table.

IV. ELIMINATING DNS POLLUTION

One of the first things to troubleshoot is whether your
nameserver is actually able to receive replies from the In-
ternet. We suspect that substantial DNS pollution is due
to firewalls and packet filters that allow outgoing queries
but block incoming replies. This type of misconfiguration
causes tremendous DNS pollution because your name-
server continues to send queries indefinitely, not realiz-
ing that it cannot receive any answers. If you really do
not want your caching nameserver to talk to other DNS
servers, block the outgoing queries (e.g., UDP packets
leaving your network destined for port 53), instead of only
blocking responses.

A. A-for-A Queries

The best way to eliminate these types of queries is to
identify the source and get it fixed. If it is a Windows box,
upgrade it to the latest service pack. If it is some other
kind of device, look for a software upgrade or complain
to the manufacturer.

Alternatively, you can stop bogus A-for-A queries by
creating 256 authoritative, numbered zones on your name-
server. These zones can even be empty. As long as your
nameserver is authoritative for all zones that end in a valid
IP address octet, i.e., between 1 and 256, your nameserver
will not forward such queries out to the Internet. With an
empty, authoritative zone, the requester receives a “name
error” response, indicating that the hostname does not ex-
ist.

Users of djbdns’s dnscache will not have this problem
because dnscache recognizes the bogus query and replies
with an answer containing the same IP address. With one
of the other implementations, you can configure the num-
bered zones (0–255) to delegate their subzones (also 0–
255) to a dnscache instance.

B. Updates and PTR Queries for RFC 1918 Addresses

Whether or not you actively use RFC 1918 ad-
dresses, minimizing DNS pollution requires that your
your caching nameserver authoritative for the following
zones:

• 10.in-addr.arpa
• 16.172.in-addr.arpa through 31.172.in-addr.arpa
• 168.192.in-addr.arpa

Again, as long as your local nameserver is authoritative
for the zone, you remove the risk that these queries pollute
the global Internet.
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C. Queries for Invalid TLDs

There is no easy fix for stopping invalid TLD queries.
The best approach we have is to use dnstop to determine
which invalid TLDs are floating around your network. Af-
ter identifying an invalid domain, you can use tcpump and
grep to find out which machines are sending those queries.
Then, either update the system configuration to use the
correct TLD, or add authoritative zones for the invalid
TLD as necessary.

An extraordinarily common “invalid TLD” is localhost.
Normally, localhost is a hard-coded name for the loop-
back interface. However, it may be missing on some sys-
tems, or a system may have been configured to query the
DNS before checking any local databases (such as the
/etc/hosts file).

To be safe, it is always a good idea to add a localhost
zone to your caching nameserver. Be sure to enter an A
record for localhost with the IP address 127.0.0.1.

D. Queries for [a-m].root-servers.net

Most likely, if you are polluting the Internet with
queries for [a-m].root-servers.net, it means your cache is
unable to receive DNS replies from root servers. Check
your firewall or packet filter configuration and verify that
DNS responses are allowed in if DNS requests are allowed
out.

E. IPv6 Address Queries

As mentioned previously, BIND8 and BIND9 are the
only implementations known to initiate IPv6 queries (for
nameserver glue). The best way to eliminate these un-
necessary queries is to upgrade your BIND installation to
version 8.4.4 or later.

As of BIND-8.4.0, BIND8 no longer issues A6 queries
for nameserver glue, although it still sends both AAAA and
A queries, and of course it still forwards A6 queries on be-
half of clients. Furthermore, beginning with version 8.4.3,
it only queries for address types that are configured for
transport. In other words, you can configure BIND to not
initiate any IPv6 queries, either by not configuring any in-
terfaces for IPv6, or by using a command line option.

Whereas BIND8 no longer initiates A6 queries, BIND9
does not initiate AAAA queries. Another interesting differ-
ence between the two is that BIND9 never fetches missing
glue records, whereas it is configurable in BIND8. Note
however that recent version of BIND9 initiate both A and
A6 queries for expired glue records.

V. CONCLUDING REMARKS

Measurements at two DNS root server nodes indicate
that 35% of the queries it receives fall into one of the
five types of pollution described in this paper. Certainly
some of these problems are worse than others and fixing
them may require non-trivial effort on your part. Below
are some reasons why you should care.

The fact that bogus DNS queries leave your network
most likely means that your users’ applications are not
working properly, even if users are not aware of it. An ob-
vious example is an HTTP server log file: if you use RFC
1918 addresses internally, an HTTP server may be mak-
ing PTR queries for the access log. If these queries escape
to the Internet and go unanswered, the HTTP server logs
the IP address instead. Someone looking at the log file
may never even realize that the server is configured to do
reverse lookups.

Another possibility is that DNS pollution may be
caused by software that should not be running on your net-
work, such as a virus or some spyware. And in the context
of software that should not be running on your network,
consider that a sufficiently high-rate stream of DNS pollu-
tion is essentially a denial-of-service (DoS) attack. If you
are careless, you may find that your caching nameserver
is either intentionally or unintentionally participating in a
DoS attack against another nameserver.

The vulnerability extends back to you. Bogus queries
leaving your network may contain private information that
an attacker can use against you; the dynamic DNS updates
are an ideal example. Not only do those queries reveal to
a listener what IP addresses you are using, they also often
contain information such as machine types and usernames
(e.g., duanes-ibook).

Bogus DNS queries consume network bandwidth but
admittedly not much. The effect on your local network
is also probably negligible. But if we can eliminate the
35% of pollution at a root server, such as F, which receives
2000 queries per second, we save 1.5 Mbit/s of Internet
bandwidth and associated processing resources.

We are active advocates of improved software engineer-
ing for applications that use and implement the DNS pro-
tocol. But fixing a variety of pervasively deployed soft-
ware modules is a daunting challenge, and in the interim
we believe that enlightened configuration and deployment
decisions of system and network administrators can con-
siderably improve the integrity of the global DNS.
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